GRANT NUMBER DAMD17-96-1-6093

TITLE: An Overcomplete Enhancement of Digital Mammograms

PRINCIPAL INVESTIGATOR: Dr. Fred Taylor
’ Iztok Koren, Ph.D.

CONTRACTING ORGANIZATION: University of Florida
_Gainsville, FLL 32611

REPORT DATE: August 1997

TYPE OF REPORT: Annual

PREPARED FOR: Commander
U.S. Army Medical Research and Materiel Command.
Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;
distribution unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

710 QUALITY [HEPECTED 2

19980114 109




' ' REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

- . Davis Highway, Suite 1

Public reporting burden for this collection of information s estimated to average 1 hour per response, including the time for revigwing_ . <
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regardmtg this burden estimate or any other aspect of this
collection of mfcmn,atlcm2 oigclxd[gng(sug eiuozns for reducing this burden te tor Info

. Arlington,

to Washington Headquarters Services, Directorate, «
2202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704

Ol

instructions, searching existing data sources,
rmation Ogeranons and Reports, 1215 Jefferson

188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank} |2. REPORT DATE

August 1997

3. REPORT TYPE AND DATES COVERED
Annual (1 Aug 96 - 31 Jul 97)

Mammograms

4. TITLE AND SUBTITLE An Overcomplete Enhancement of Digital

6. AUTHOR(S)
Dr. Fred Taylor

Istok Koren, Ph.D.

5. FUNDING NUMBERS
DAMD17-96-1-6093

|7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Florida

Gainesvill, FL 32611

8. PERFORMING ORGANIZATION
REPORT NUMBER

Commander

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Medical Research and Materiel Command
Fort Detrick, Frederick, Maryland

21702-5012

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200

In this report, we describe recent progress in the development of methodology for providing
radiologists with a better viewing environment to facilitate the interpretation of mammograms.
Our research has been directed towards local processing of images for enhancement of features of
diagnostic importance in mammography, and towards development of image fusion methods for
blending of enhanced features for an improved visualization of mammogrames.

We report on the construction of a redundant steerable wavelet transform for multiscale
analysis along distinct orientations. We have addressed both elimination of undesirable artifacts
commonly associated with wavelet transforms, and efficient implementation of the transform.
From qualitative and quantitative comparisons with competitive transforms for fusion of features
in mammography, we conclude that the transform is well suited for enhancement of mammograms.
By improving the visualization of breast pathology, we can improve chances of early detection
while requiring less time to evaluate mammograms for most patients.

14. SUBJECT TERMS Rreast Cancer

15. NUMBER OF PAGES
72

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT]

Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102




nt FOREWORD

Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the U.S.
Army.

Where copyrighted material is quoted, permission has been
obtained to use such material.

Where material from documents designated for limited
distribution is quoted, permission has been obtained to use the
material.

ﬁ%

‘ Citations of commercial organizations and trade names in
this report do not constitute an official Department of Army

endorsement or approval of the products or services of these

organizations.

In conducting research using animals, the investigator(s)
adhered to the "Guide for the Care and Use of Laboratory
Animals," prepared by the Committee on Care and Use of Laboratory
Animals of the Institute of Laboratory Resources, National
Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s)
adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology,
the investigator(s) adhered to current guidelines promulgated by
the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the
investigator(s) adhered to the NIH Guidelines for Research
Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms,
the investigator(s) adhered to the CDC-NIH Guide for Biosafety in
Microbiological and Biomedical Laboratories.

£

f T
AW

2-2-]7

PI - Signature Date




Table of Contents

1 Introduction
1.1 Overviewof Contents . . . . . . . . . .. . .. ... . i
1.2 Publications . . . . . . . . .. e
1.3 Notation . . . . . . . . ..

2 Body
2.1 Signal Processing Using Central B-Splines . . . . ... ... .........
2.1.1 Central B-Splines: Definition and Properties . . . . . ... ... ...
2.1.2 B-Spline Signal Interpolations . . . . . ... ... ... ........
2.1.3 B-Spline Signal Approximations . . . . ... ... ... ........
2.2 Steerable Dyadic Transforms . . . . ... ....................
2.2.1 Shortcomings of Traditional Methods of Wavelet Analysis. . . . . . .
2.2.2 1-D Discrete Dyadic Wavelet Transform Revisited . . . . .. ... ..
223 Remarks . . . . . . ... e
2.2.4 2-D Discrete Dyadic Wavelet Transform Revisited . . . . .. .. ...
2.2.5 Steerable Functions . . . . . ... ... ... .. ... ... ...
2.2.6 Steerable Dyadic Wavelet Transform . .. ... ... ... ......
2.2.7 Multiscale Spline Derivative-Based Transform . . ... ... ... ..
2.2.8 Finite Impulse Response Filters . . . . . .. ... ... ... .....
2.2.9 Infinite Impulse Response Filters . . . . . ... ... .........
23 ImageFusion . ... .. .. . . . . ... . e
2.3.1 Gradient Pyramid. . . . . .. .. ... ... .. ... . ..
2.3.2 Discrete Wavelet Transform . .. ... ... ... ... ........
2.3.3 Comparison of Transforms . . . . . ... ... ... ..........

3 Conclusions

References




List of Tables

Sy Ut W W N

Transfer functions of direct B-spline filters for orders from 0t0o 9. . .. . ..
Impulse responses h(n), g(n), I(n), and k(n) for p=0 and d € {1,2, 3}.
Impulse responses h(n), g(n), I(n), and k(n) for p=1 and d € {1, 2, 3}.
Impulse responses h(n), g(n), I(n), and k(n) for p=2 and d € {1, 2, 3}.
Impulse responses t;(n) forpe {0,1,2}. . ... ... .. ... .. ... ...

Performance of fusion algorithms based on four different transforms. . . . . .



List of Figures

© 00 ~J O Ot = W N

— e = e e e e
N O Ot & W N = O

Spline functions f3,(z) and n,(z) for p € {0,1,2,3,4}. . . .. ... ... ...
Fourier transforms Bp(w) and 7j,(w) for p€ {0,1,2,3,4}. ... ........

Splines 5,,(3:) and ﬁop(w) forpe {0,1,2,3,4}. . . . ... ... ... ... ...
Discrete wavelet transform of two signals translated to each other. . . . . . .
Discrete wavelet transform and “algorithme & trous.” . . ... ... ... ..
Filter bank implementation of a 1-D discrete dyadic wavelet transform. . . .
Comparison of two discrete implementations using sinc(z) as an input.

Wavelets ¢(z) = ﬂégjﬂ forpe {0,1,2} andde {1,2,3}. . . ... ... ..
Filter bank implementation of a 2-D discrete dyadic wavelet transform. . . .

Filter coefficients for the second derivative steerable dyadic wavelet transform.

Filter coefficients for the fourth derivative steerable dyadic wavelet transform.
Filter bank implementation of a spline derivative-based transform. . . . . . .
Phantom used for comparisons of different transforms for image fusion.

Image fusion of phantoms shifted by one sample. . . . . . ... .. ... ...
Image fusion of phantoms shifted by five samples. . . .. ... .. ... ...

Blurred mammograms for evaluation of fusion algorithms. . . ... ... ..

Zooming in on the region of interest in the fused images. . . . ... ... ..

13

63



1 Introduction

Breast cancer is the most frequently diagnosed malignancy among women in the United
States [1]. In 1996 the American Cancer Society estimates that 184,300 women will be
newly diagnosed with breast cancer and that 44,300 will die from the disease [1]. Breast
cancer accounts for 31% of all cancers detected and 17% of all cancer deaths, and ranks as
the second leading cause of death from cancer among women in the United States [1]. Five
year survival rates are generally very high (93%) for breast cancer staged as being
localized, falling to 72% for regional disease and only 18% for distant disease [2]. The early
detection of breast cancer is clearly a key ingredient of any strategy designed to reduce
breast cancer mortality.

Mammography’s role is the early detection of breast cancer. Although more accurate than
any other modality, existing techniques for mammography only find 80 to 90% of the breast
cancers. Moreover, in 7 to 10% of cases, the cancer will not be visible on the mammogram.
It has been suggested that mammograms as normally viewed, display only about 3% of the
total information detected. Perception is a problem particularly for patients with dense
fibroglandular patterns. The importance of diagnosis of breast cancer at an early stage is
critical to patient survival. The general inability to detect small tumors and other salient
features within mammograms motivates our investigation.

The goal of this project is to develop a diagnostic tool for radiologists that will refine the
perception of mammographic features (including lesions, masses and calcifications) and
improve the accuracy of diagnosis. Qur research efforts are geared towards improving the
local mammographic viewing environment by selectively processing mammograms along
different orientations, and towards providing a better global mammographic viewing
environment by fusing together locally processed sections of images. By improving the
visualization of breast pathology we can increase the chances of early detection of breast
cancers (improve quality) while requiring less time to evaluate mammograms for most
patients (lower costs).

A major reason for poor visualization of small malignant masses is the subtle difference in
x-ray attenuation between normal glandular tissues and malignant disease [3]. This fact
makes the detection of small malignancies problematical, especially in younger women who
have denser breast tissue. Although calcifications have high inherent attenuation
properties, their small size also results in a low subject contrast [4]. As a result, the
visibility of small tumors, and any associated microcalcifications, will always be a problem
in mammography as it is currently performed using analog film.

We are investigating a methodology for accomplishing mammographic feature analysis




through multiscale representations. Wide variety of feature sizes and shapes in
mammograms makes single-scale processing methods ineffective. In [5], it was shown that,
in the context of mammography, multiscale image processing algorithms can outperform
traditional contrast enhancement methods such as histogram equalization and unsharp
masking. As reported in [6], an improvement in feature visualization was noted for
mammograms processed using multiscale wavelet processing techniques. Furthermore, in
[7], it was demonstrated that unsharp masking with a Gaussian lowpass filter can be
formulated as a special case of contrast enhancement via a discrete dyadic wavelet
transform. Here, we pay special attention to two-dimensional extensions of a discrete
dyadic wavelet transform that enable efficient directional processing of mammographic
images, and then examine the usefulness of the derived transform for image fusion in
mammography:.

In the sections that follow, we briefly overview the contents of the report, list publications

H

and explain notation used in the report.

1.1 Overview of Contents

Discrete dyadic wavelet transform has been successfully applied to processing of
mammographic images [8, 5, 7, 9, 10]. Since the transform uses wavelets that are
derivatives of central B-spline functions, we begin Section 2 with a review of central
B-splines’ properties and algorithms.

Extensions of the discrete dyadic wavelet transform are presented in Section 2.2. Since the
transform is of paramount importance in our methodology for improving the imaging
performance of mammography, this section represents the largest portion of the report.
First, some of the shortcomings of orthogonal and biorthogonal wavelet analyses are
presented in Section 2.2.1. Lack of translation and rotation invariance of these transforms
motivates the use of redundant representations. Next, Section 2.2.2, examines a dyadic
wavelet transform in one dimension. We present extensions of the discrete dyadic wavelet
transform to higher order derivatives and to even order spline functions. To compute a
discrete transform from a continuous one, the discrete computation must be properly
initialized. We devise a new initialization procedure that is shown to be more accurate than
the one suggested by Mallat and Zhong [11]. After the derivation of the transform, we point
out relevant connections to scale-space filtering and reconstruction from edges in Section
2.2.3. Section 2.2.4 then presents a direct extension of the one-dimensional transform to
two dimensions. In case of the first derivative of a Gaussian, a rotation-invariant transform
can be obtained by a tensor product extension of the one-dimensional transform to two
dimensions. Anisotropies introduced by the two-dimensional second derivative discrete




dyadic wavelet transform may be avoided by combining derivatives into an isotropic
operator, such as Laplacian of Gaussian [7, 10]. Such an operator, however, cannot perform
orientation analysis (due to its isotropic nature). To lay grounds for effective directional
operators, the concept of steerability is reviewed in Section 2.2.5. Steerable dyadic wavelet
transform is constructed in Section 2.2.6, and its z-y separable analog in Section 2.2.7.
These transforms, in addition to being translation-invariant, enable rotation-invariant
processing for derivatives of orders higher than two as well. Given that the developed
transforms are highly redundant, an efficient implementation is extremely advantageous.
This issue is addressed in Sections 2.2.8 and 2.2.9. When filtering of a signal is performed
by circular convolution, boundary effects may result. A standard way of dealing with this
problem is by mirror-extending the input signal to the filter. We build on ideas presented
in [12], and combine such an extension with symmetry/antisymmetry of the filters, to
achieve savings in both computation time and memory.

Section 2.3 deals with image fusion. First, two popular transforms for image fusion
applications, the gradient pyramid and orthogonal/biorthogonal wavelet transform, are
briefly presented in Sections 2.3.1 and 2.3.2. Comparison of the two transforms with
steerable dyadic wavelet transform using subjective and objective criteria is presented in
Section 2.3.3. Steerable dyadic wavelet transform did not introduce artifacts common for
the orthogonal and biorthogonal wavelet transforms, while outperforming the gradient

pyramid in terms of sharpness and mathematically defined error criteria.

1.2 Publications

Below, we provide the list of publications accomplished during the first year of the project.

[1] I. Koren, A. Laine, and F. Taylor, “An overcomplete enhancement of digital
mammograms,” Era of Hope, A Multidisciplinary Reporting of DoD Progress, Washington,
D.C., Oct.—Nov. 1997.

[2] I. Koren and A. Laine, “A discrete dyadic wavelet transform for multidimensional
feature analysis,” in Time-Frequency and Wavelets in Biomedical Signal Engineering, M.
Akay, Ed., IEEE Press, New York, NY, 1997, pp. 425-449.

[3] S. Schuler, I. Koren, M. Shim, A. Laine, B. Steinbach, and W. Huda, “An interactive
tutorial for contrast enhancement of digital mammograms via multiscale representations on
the Web,” RSNA EJ, 1997.

[4] A. F. Laine, I. Koren, S. Schuler, W. Huda, and B. G. Steinbach, “Contrast
enhancement of mammographic features via multiscale analysis,” RSNA 82nd Scientific




Assembly and Annual Meeting, Chicago, IL, 1996.

1.3 Notation

We use symbols N, Z, and R for the sets of naturals, integers, and reals, respectively.
L*(R) and L?(R?) denote the Hilbert spaces of measurable, square-integrable functions
f(z) and f(z,y), respectively.

The inner product of two functions f(z) € L*(R) and g(z) € L*(R) is given by

(F@),9@) = [ °:o f(2) 9(z) dz.

The norm of a function f(z) € L?(R) is defined as

1=/ [ @R da.

The convolution of functions f(z) € L?(R) and g(z) € L?(R) is computed as

fr9@) = [ 10 g -1)ar,

—00

and the convolution of two functions f(z,y) € L?(R?) and g(z,y) € L?*(R?) equals

f*g(x)y) = [z /_o:o f(txaty)g(m_tm)y_ty) dtzdty

The Fourier transform of a function f(z) € L?(R) is defined as

fw)= [ f@)eian,

—00

and the Fourier transform of a function f(z,y) € L?>(R?) is equal to
~ o0 oo .
flomo) = [~ [ fla )i dady.
—00 J =00

1*(Z) and 1?(Z?) stand for the spaces of square-summable discrete signals f(n) and
f(ng, ny), respectively.
The z-transform of a discrete signal f(n) € [2(Z) is defined as

F(z) = Z f(n)z™™.
The convolution of discrete signals f(n) € [2(Z) and g(n) € I?(Z) is equal to
frg(n)= 3 f(m)g(n—m),

m=—0o0

10




and the convolution of discrete signals f(n,, n,) € 1*(Z?) and g(ng,n,) € I*(Z?) is given by

o0 o
fxg(ng,ny) = z Z (Mg, my) g(ng — Mg,y — my).

The Fourier transform of a discrete signal f(n) € [2(Z) is equal to the z-transform

Z f —3wn

n=—oo

evaluated on the unit circle

and the Fourier transform of a discrete signal f(n;,n,) € [2(Z?) is defined as

wm) wy Z Z f na:’ ny g~ (Wematuymy),
Ny =—00 Ny=—00
For later use, we define the following functions:

1. the unit impulse function

1 forz=0
ou(z) = { 0 otherwise,

2. the unit step function
u(z) == 1 forz>0
10 forz <0,

3. the rectangular function

|1 forz| <
rect(z) = { 0 for |z| > 3,

=00 =

4. the sinc function )
sinc(z) := s1n(7r:c), and
Tz

5. the unit impulse sequence

1 forn=0
o(n) = { 0 otherwise,

where r € Rand n € Z.




2 Body

2.1 Signal Processing Using Central B-Splines

In this section, we briefly review fundamentals of spline processing needed for derivations in
Section 2.2. First, Section 2.1.1 presents basic properties of central B-splines. Next, Section
2.1.2 introduces a digital filtering scheme for B-spline signal processing. Finally, Section

2.1.3 describes signal approximations using projections onto the spline function spaces.

2.1.1 Central B-Splines: Definition and Properties

Given real numbers —00<zy <1 <T3<...<Tpy < ZTme1 <00, a function on the interval

[0, Zm+1] is called a spline function of order p with the knot (i.e., grid point) sequence
T1,T3,...%m, if it is (1) a polynomial of degree p or less in each interval [z;, z;41],
i=0,1,...m, and (2) continuous in its derivatives up to the order p—1 on the interval
[z, Tm+1] (i-e., CP " zo, Trmra])-

Here, we will concentrate primarily on basis splines (B-splines), or more precisely, central
B-splines having knots at : € Z for p odd and at 7 + % for p even [13]. Central B-splines of
order p (with p+1 knots) are defined as

3= 5 S0 (7 (o4 ) u(e s 2 ),
toi=0

Figure 1 shows f,(z) and their Fourier transforms ﬂ;, (w) for p € {0,1,2,3,4}.

A family of functions {8,(z — m)},,. 7 forms a basis of S, a space of order p spline
functions with knots at ¢ for p odd and at i+ 1 for p even (i € Z) [13, 14]. Except for
p = 0, the basis functions {f,(z — m)} are not orthogonal.

Let us list some properties of functions §,(z) [15, 13]:

1. Bp(z) are nonnegative functions with a support of length p+1,

p+1 times

2. Bp(z) = rﬂo * B %% [y (:r)‘, where “¥” denotes the convolution operator, or,

equivalently, in the Fourier domain:

3. Bp(z) = zl) ((-’%l +z) ﬂp_l(x + %—) + (7’;’—1 -

LB (o 4}) = B (o )

~——
=
|
s
—~
8
8|
~—
~—
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Figure 1: Spline functions (a) B,(z) and (b) n,(z) for p € {0,1,2,3,4}.
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Another interesting property of B-splines is the fact that they converge to a Gaussian as
their order tends to infinity. Unser et al. [16] derived the Gaussian approximation

L~

1 =z
Bp() =~ oo e
»

P

Rt

where o, = \/T-’% . Ratio “—’{ilﬁgl—lz, for example, is already well below 0.2%.
Denoting by S? a spline function space spanned by {By(x — m)} for p odd and by

{Bp(z ~ 3 —m)} for p even (subscript in S% refers to the fact that spline functions have
knots at integers), spline spaces form a nested sequence

.. C8uC...cS8cSlcS,C...C 8%, C.... By orthogonalizing this basis
functions a multiresolution analysis of L?(R), from which the Battle-Lemarié wavelet bases
stem, can be built [17]. Here, we will not pursue constructions of orthogonal,
semi-orthogonal, or biorthogonal spline-wavelets any further—reader looking for a detailed

treatment of this subject may find a good starting point in books (18, 19].

2.1.2 B-Spline Signal Interpolations

Unser et al. developed a fast digital filtering scheme for B-spline signal processing [20].
They defined a discrete B-spline of order p and expansion factor (spacing between knots) m
as

bom() =5, (=), mme Z.

Henceforth, if the distance between knots equals one, we will write bp(n) instead of b, (n).
Interpolation of a discrete signal s(n) € 1>(Z) by s,(z) € S? using central B-splines

s(n) = sp(z)| = Y, c(®)Bp(z—1)| (1)
can now be written as a convolution sum
s(n) = c* by(n). (2)

If s(n) are samples of a function s(z) bandlimited to [—, 7] (i.e., the support of its Fourier
transform S(w) is in [~m, 7)), it can be shown that s,(z) — s(z) as p — oo [21, 22].

In [20], they refer to a linear operator by which B-spline coefficients ¢(n) can be obtained
from samples s(n) as a “direct B-spline transform.” Equation (2) therefore represents
“indirect B-spline transform” of a sequence {c(n)}.

After taking the z-transform of (2), the direct B-spline filters are found to be

b1 (n) = Z7{[By(2)]*}. Since B-spline functions §,(z) are compactly supported, indirect

14




Table 1: Transfer functions of direct B-spline filters for orders from 0 to 9.

P B, () ]

0 1

1 1

2 e
3 T
4 384

2247624230476z~ 1422

5 120
2242624664262~ 1422

6 46080
234722224105432+23548+105432 1 +7222—242-93

7 5040
23+12022+11912+24164+11912—1+120z—2+z—3

8 10321920
244655223+4-33161222+24852882-+4675014+ 24852882~ 1 13316122 21655223 +z—4

362880
9 2445022%+1460822+882342+156190+-882347~ 1 +146082— 21502234 2—4

B-spline filters b,(n) are finite impulse response (FIR) filters, while direct B-spline filters
b,'(n) are infinite impulse response (IIR) filters. Aldroubi et al. [21] showed that IIR
filters b, (n) are stable (i.e., the region of convergence of B;'(z) includes the unit circle
(23]) for any order p. Note that both indirect and direct B-spline filters are symmetric,
which follows from the fact that central B-splines 3,(x) are symmetric.

Table 1 shows the z-transforms of direct B-spline filters for the first ten orders. We
postpone the discussion on implementation details of B-spline filters until Sections 2.2.8
and 2.2.9.

Instead of using B-spline interpolation as given by (1) it is sometimes convenient to express
the interpolating function s,(z) in terms of discrete samples s(n)

o0

()= Y smle i), 3)
i=—00
where 7,(z) is the cardinal spline of order p. In the frequency domain, cardinal splines
converge to an ideal lowpass filter with cutoff frequency 7 (i.e., n,(z) — sinc(z)) as p tends
to infinity [21, 24], which establishes the asymptotic equivalence with Shannon’s sampling
theorem [25].

15




Using (1) and (2) with (3) cardinal splines can be related to B-splines:

ma)= Y 50— i) @

1=—00

Cardinal splines 7, () and 7j,(w) for p € {0,1,2, 3,4} are shown in Figure 2.

2.1.3 B-Spline Signal Approximations

Central B-splines are also simple to use when the goal is function approximation.
Least-squares B-spline approximation of s(z) € L?(R) is achieved by computing the
orthogonal projection of this function onto S?. We have

(o) = 5y(0) = 3 dl)fyla— ) )
with .
() = (s(a), foa — 1), 0
where

° o0
Bpi) = 3 byl — i)
1=—00
is the dual spline of order p [24]. Spline functions 8,(z) and ﬁop(x) satisfy the

biorthogonality condition
(Bp(z —m), Bp(z —n)) =6(m —n), m,nc Z.

(Note that, since both £,(z) and ﬂop(a:) form a basis of S?, they can be interchanged in (5)
and (6).) )

Figure 3 shows functions ﬁop(:v) and their Fourier transforms [;,,(w) for p € {0,1,2,3,4}.

An interesting alternative to the minimum L?-norm (i.e., least-squares) approximation of a
signal is obtained by computing oblique instead of orthogonal projection of the signal onto
the spline function space. Unser and Aldroubi proposed an independent specification of the
sampling and approximation spaces [26]: a linear operator maps coefficients of the input
signal expansion over sampling space basis into the coefficients of the approximation space
basis expansion from which the signal’s projection onto the approximation space is
recovered. Constraining the entire system to be linear, shift-invariant for integer
translations, and consistent (i.e., the system acts as an identity operator for functions that
belong to the approximation space), the obtained solution for the signal approximation is

16
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the projection of a signal onto the approximation space perpendicular to the sampling
space [26]. Analogously to (5) and (6) this projection can be expressed as

o0

sr(z) = 3. a(i)B(z —1) (7)

with
a(z) = C]1_21 * (8(:13), ﬁs(x - 1')>’

where g;5 is the convolution inverse of the cross-correlation sequence

q12(%) = (Bs(z — 9), Br(2)) = byyr41(7).

When the sampling space §° and the approximation space S” are identical (i.e., s=r), an
orthogonal projection given by (5) and (6) results. (Note that the described oblique
projection is not restricted to spline function spaces—the only requirement is that both
sampling space basis and approximation space basis are Riesz bases of the corresponding
function spaces [26].)

Signal approximation (7) is particularly attractive in situations where the sampling space is
given a priori (e.g., by the impulse response of the acquisition device [26]) or when such an
approximation is close to the optimal least-squares solution but simpler to implement than

the orthogonal projection (e.g., [27]).

2.2 Steerable Dyadic Transforms

In this section, we derive transforms that will enable efficient directional processing of
mammograms. Section 2.2.1 deals with problems due to the lack of translation and
rotation invariance of orthogonal and biorthogonal wavelet transforms. In Section 2.2.2,
the one-dimensional discrete dyadic wavelet transform [11] is augmented to obtain a strong
foundation for derivations of two-dimensional transforms. Connections to reconstruction
from edges, and to scale-space filtering are mentioned in Section 2.2.3. Section 2.2.4
presents a direct extension of the one-dimensional transform to two dimensions.! The
concept of steerability is explained in Section 2.2.5, and then used for derivations of a
steerable dyadic wavelet transform and multiscale spline derivative-based transform in
Sections 2.2.6 and 2.2.7, respectively. Sections 2.2.8 and 2.2.9 describe how to exploit
symmetries of signals and filters for a fast implementation of the transforms.

1For extensions to higher dimensions, please refer to [12, 28].
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2.2.1 Shortcomings of Traditional Methods of Wavelet Analysis

Analyzing images across multiple scales and resolution has become a powerful tool for
solving compelling problems in computational vision, image processing, and pattern
recognition. Wavelet theory encompasses multiscale and multiresolution representations,
such as subband filtering [29], image pyramids [30], and scale space filtering [31], into a
unified mathematical framework. In the area of image processing, there remain few
research areas to which wavelet analysis has not been applied. For example, problems in
image compression, denoising, restoration, enhancement, registration, fusion, segmentation,
and analysis, have all been approached with distinct kinds of wavelet processing.

Though ubiquitous, wavelet analysis is not without problems of its own. Lack of
translation invariance, one of the major problems of the wavelet transform [17], is in
multiple dimensions accompanied with lack of rotation invariance.

Wavelet transform in its most commonly used orthogonal or biorthogonal forms is not
translation and rotation-invariant. By translation-invariant transform, we mean a
transform that commutes with a translation operator. Since we will deal primarily with
discrete transforms in this work, we constrain the translation parameter to integer
multiples of a sampling period.

Lack of translation invariance of the discrete wavelet transform is illustrated in Figure 4.
Here, we can clearly see how a translation of the input signal by one sample results in a
completely different set of transform coefficients (orthogonal wavelet DAUB4? [17] was used
in this experiment).

Noninvariance under translations of an orthogonal and biorthogonal wavelet transform is
due to lower sampling density at coarser scales.® A straightforward way of dealing with this
problem is to construct a redundant transform by using the same sampling frequency for
the input signal and all scales of the transform. A filter bank implementation of such a
transform, called “algorithme & trous” [32], is based upon the fact that downsampling
followed by filtering is equivalent to filtering with the upsampled filter before the
downsampling, as shown in Figure 5.

Lack of rotation invariance is another shortcoming of traditional (i.e., orthogonal and
biorthogonal) wavelet techniques. In defining rotation invariance, we are a bit less strict
than with translation invariance. We do not require that the transform commutes with a
rotation operator here. Even in the case of a simple filtering, this would limit us to

>The number in DAUBA refers to twice the order of the wavelet (i.e., two in this case).

3In practice, since analysis is performed over a finite range of scales, a discrete wavelet transform is
translation-invariant by translations determined by the coarsest scale (e.g., sixteen samples for the analysis
from Figure 4) [17].
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Figure 4: (a) Original signal and (b) signal translated one sample to the left with its discrete
wavelet transform coefficients shown across dyadic scales 2™, m € {1, 2, 3, 4}.
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(b)

Figure 5: Filter bank implementation for (a) a discrete wavelet transform and (b) “algorithme
a trous” decompositions for three levels of analysis.

circularly symmetric filters only. Our requirement for analysis is a transform that enables
rotation-invariant processing. As an example of such a transform, let us consider filtering
with the first derivative of a two-dimensional Gaussian probability density function in two
directions, specifically, along z and along y-axis. By linearly combining the results of
filtering in these two directions, filtering with the first derivative of a Gaussian in any
direction can be computed. This fact was used by Canny [33] for edge detection. A
determined edge direction rotates as an input image is rotated.

After choosing the fundamental properties of the transform, one must decide upon the
basis functions to be applied. For our studies, we selected basis functions that well
approximated derivatives of a Gaussian, because (1) the Gaussian probability density
function is optimally concentrated in both time and frequency domain, and thus suitable
for time-frequency analysis, (2) higher order derivatives of a Gaussian can be, similar to
the first derivative, used for rotation-invariant processing [34], and (3) the Gaussian
function generates a causal (in a sense that a coarse scale depends exclusively on the
previous finer scale) scale space [35]. The last property makes possible scale-space
“tracking” of emergent features.

2.2.2 1-D Discrete Dyadic Wavelet Transform Revisited

A discrete wavelet transform is obtained from a continuous representation by discretizing
dilation and translation parameters such that the resulting set of wavelets constitutes a
frame. The dilation parameter is typically discretized by an exponential sampling with a
fixed dilation step and the translation parameter by integer multiples of a fixed step [17].
Unfortunately, the resulting transform is variant under translations, a property which
makes it less attractive for image analysis.
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As we have already mentioned in Section 2.2.1, sampling the translation parameter with
the same sampling period as the input function to the transform results in a
translation-invariant, but redundant representation. The dyadic wavelet transform
proposed by Mallat and Zhong [11] is one such representation. Let us begin with a brief
review of properties of the dyadic wavelet transform as described in [11], but included here
for completeness.

The dyadic wavelet transform of a function s(z) € L?(R) is defined as a sequence of
functions

{Wins(2)} ez (8)

where Wp,s(z) = s % (), and ¢, (z) = 27™(27™z) is a wavelet 9)(z) expanded by a
dilation parameter (or scale) 2™. Note the use of convolution instead of an inner product.
To ensure coverage of the frequency axis the requirement on the Fourier transform of
¥m(z) is the existence of A; > 0 and B; < co such that

A< Y BRI B

is satisfied almost everywhere. The constraint on the Fourier transform of the (nonunique)

reconstructing function x(z) is

o0
> P(2™w) %(2™w) = 1.
m=—00
A function s(z) can then be completely reconstructed from its dyadic wavelet transform
using the identity

s(z) = i Wins * xm(x),

m=—oo
where xm(z) = 27™x(27™x).

In numerical applications, processing is performed on discrete rather than continuous
functions. When the function to be transformed is in the discrete form, the scale 2™ can no
longer vary over all m € Z. Finite sampling rate prohibits the scale from being arbitrarily
small, while computational resources restrict the use of an arbitrarily large scale. Let the
finest scale be normalized to 1 and the coarsest scale set to 2M.

The smoothing of a function s(z) € L?(R) is defined as

Sms(z) = s * ¢pm(x),

where ¢, (z) = 27™¢(27™x) with m € Z, and ¢(z) is a smoothing function (i.e., its
integral is equal to 1 and ¢(z) — 0 as |z| = o0).
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In [11], a real smoothing function ¢(z) was selected, whose Fourier transform satisfied
Z $(2™w) R(2"w). (9)

In addition, it was shown that any discrete function of finite energy s(n) € I2(Z) can be
written as the uniform sampling of some function smoothed at scale 1, i.e., s(n) = Sy f(n),
where f(z) € L*(R) is not unique. Thus, the discrete dyadic wavelet transform of s(n) for
any coarse scale 2M was defined as a sequence of discrete functions

{SMf(n + 3)’ {Wmf(n + S)}mE[LM]}nEZ’

where s is a 1)(z) dependent sampling shift.

The above initialization s(n) = Sy f(n) is rather standard in the discrete wavelet transform
computation [17], although it yields correct results (i.e., the discrete wavelet transform is
equal to the samples of its continuous counterpart) only when s(n) = Sys(n). Here, we will
concentrate on wavelets which are derivatives of spline functions and this will lead us to a
simple initialization procedure [36] that alleviates the above problem.

For a certain choice of wavelets the discrete dyadic wavelet transform can be implemented
within a fast hierarchical digital filtering scheme. Next, we shall summarize the relations
between filters, wavelets, and smoothing functions.

First, let us introduce a real smoothing function ¢(z) such that (9) can be rewritten as*

- i:z/?(zmw) f(2mw), (10)

and let us set ¢(z) = B,(z) (i.e., we restrict ourselves to wavelets which are spline
functions).

Computing (10) for the finest two scales shows that

D) R(w) = Bpw) pw) — Bp(2w) $(2w). (1)

$,(2w) can be related to B,(w) by expressing (,(2w) as (cf. Proposition 1 of [36])

+1 . p+1
fo(2w) = - [ Sn) P (sin (2)
’ 27+ | 5ip (;—’) £ ’
C(MADWY e
and using THL im0 = 2L (4000,

,ép(Qw) = (cos (—;))pﬂ ﬁp(w). (12)

“Note that the sum index determines the range of scales of the discrete transform: using (9) we have
$(2w) and %(2w) at the finest scale of the transform, while for (10) we get 9(w) and %(w).

e
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(Note that a relation similar to (12) can be derived for integer scales provided that the
dilation parameter and the order p are not both even [36].)

Let F(w) be a digital filter frequency response and let Fy(w) = e/“*F(w).

If we choose

P(w) = G-s(w) Bp(w), (13)
¢(2w) = Ls(w) p(w), (14)
X(w) = K;(w) p(w), (15)

and
H(w) = &** (cos (%>)p+1 , (16)

where s € {0, 3} is a filter dependent sampling shift needed for g(n), [(n), k(n), and h(n)
to be FIR filters, and insert Equations (12)-(16) into (11), we observe the relation between
frequency responses of the filters

G(w)K (w) + H(w)L(w) = 1. (17)

Similar to orthogonal and biorthogonal discrete wavelet transforms, the discrete dyadic
wavelet transform can be implemented within a hierarchical filtering scheme. To derive
such a digital filtering scheme, let us assume that 5(w) from (8) is bandlimited to [—, 7).
Using Shannon’s sampling theorem [25] and (13) in the definition of the dyadic wavelet
transform (8) with m=0 shows

Wos(z) = / z 1)sinc(t — 1) Z g—s(m)Bp(z — t — m) dt.

1=—00 m=—o0

By making use of the fact that the cardinal spline functions tend to the sinc function as
their order r approaches infinity, and employing (4) we can write

Wos(w) =~ S(w) B (w) B (w) By(w) G—s(w),

or, by using (12) and (16),

FAWns(@)ozn} = S(w) B (w) Bpirs1(w) G—s(2"w HH—s (2w (18)

Equation (18) entirely specifies the discrete dyadic wavelet transform decomposition, while
the reconstruction follows from (11)—(16). Three levels of a filter bank implementation are

shown in Figure 6. (Note that the initialization is the same as the one proposed in [36] and
that except for the prefiltering and postfiltering, this scheme is implementing “algorithme &
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Bi;+r+l ((1))

G(40) |——]K(4w)

H40) |—o—{L(40)

Figure 6: Filter bank implementation of a one-dimensional discrete dyadic wavelet transform
decomposition (left) and reconstruction (right) for three levels of analysis.

trous.”) Noninteger shifts at scale 1 for filters with s=% are rounded to the nearest integer.

We will now perform a simple experiment which will illustrate the difference between the
implementation of the discrete dyadic wavelet transform as originally proposed in [11] (i.e.,
without prefiltering and postfiltering) and the one from Figure 6.

Let s(z) = sinc(z), p = 2, and g(n) = 26(n + 1) — 26(n) (this particular choice for p and
g(n) results in the same wavelet as was used by Mallat and collaborators [37, 11]). The

dyadic wavelet transform of s(z) at a scale 2™ (8) in the frequency domain is then
Wins(w) = G—o(2™w) fa(2™w) rect (5“’;) . (19)

The Fourier transform of the discrete dyadic wavelet transform of s(n) = §(n) at a scale 2™

using spline based initialization follows from (18)

F{Wms(n)} = B7(w) B,y3(w) G, (2™w) 1‘[ H_,(2'w), (20)

1=

while the one using the algorithm from [11] equals

F{Wnms(n)} = G_s(2™w HH_S (2w (21)
i=0

In Figure 7 a comparison of magnitudes of (20) and (21) versus (19) is shown: in Figure
7(a) magnitudes of (19) (solid) and (21) (dashed) are plotted for m € {0, 1,2, 3}, while the
dashed curves in 7(b) represent magnitudes of (20) with r=5.
By choosing the appropriate order r, (20) can approximate (19) in the interval [—, 7]
arbitrarily good, while originally proposed (21) has troubles at finer scales. Mallat and
Zhong [11] noticed that there was a problem with their discrete transform computation,
and introduced a set of constants associated with the discrete transform coefficients at
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(a) (b)

Figure 7: (a) Fourier transform magnitudes of the dyadic wavelet transform of s(z) = sinc(x)
(solid) and the originally proposed discrete dyadic wavelet transform [11] of s(n) = §(n)
(dashed). (b) Fourier transform magnitudes of the dyadic wavelet transform of s(z) (solid)

and the discrete dyadic wavelet transform using quintic splines for interpolation of s(n)
(dashed).
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dyadic scales. They chose the values of constants such that the transform coefficient
modulus maxima remained constant over all dyadic scales for a step edge input signal. In
relation to Figure 7(a) this is equivalent to multiplying F{W,,s(n)} by a distinct constant
for each m. Clearly, this can improve over the situation depicted by Figure 7(a), but can
still not compete with the described spline based initialization.

Next, we will choose filters in the filter bank implementation of the discrete dyadic wavelet
transform. As already mentioned, we are interested in wavelets which are derivatives of
spline functions. G(w) in (13) is therefore the Fourier transform of the difference operator
centered around —s (cf. Property 4 in Section 2.1):

G(w) = e (2j sin (‘-‘2-’))'1 (22)

where d is the order of the derivative and the sampling shift for this filter is s = 4med2,
Since H(w) was already given by (16), the remaining two filters to be determined are L(w)
and K(w). Both of them are (as is true for ¢(z) and x(z)) nonunique.

If we choose L(w) such that we can express K(w) in terms of a finite geometric series

having the smallest number of elements for an arbitrary p, we get

L4

L(w) = e™9ws mgl (=1)m+! ( L%J > (cos (‘—;—))(pﬂ)(zm—l) (23)
and
_ W\ \ dmod2 [ P W\ 2m L]
Kw) = (2;)(1 (e"“’s sin (5)) ! (2;0 (cos (5)) ) , (24)

where |z| denotes the largest integer smaller than z, the sampling shift for L(w) is the
same as the one for H(w) (i.e., s= M), and the sampling shift for K(w) is the same
as the one for G(w).

Note that Equations (16) and (22)-(24) work fine from the mathematical point of view,
but in practice the reconstruction may become cumbersome when both p and d are large
(the lengths of impulse responses h(n), g(n), I(n), and k(n) are p+2, d+1,
(p+1)(d—(d+1)mod2)+1, and pd+(p+1)(dmod2)+1, respectively, while for the frequency
responses of the decomposition filters we observe that lim,_, |H_s(w)| = 6, (w + 2n7) and
limg00(25) 74 |G—s(w)| = 8u(w + (2n+1)7) with n € Z).

It is also worth noting that K(w) is a lowpass filter when p is even (i.e., the reconstruction
function x(z) is a wavelet only for p odd).

Tables 2, 3, and 4 list impulse responses of the four filters for p € {0,1,2} and d € {1, 2,3},
while Figure 8 shows wavelets ¢(z) = d—dgg—g;;ﬁﬂ for the same values of p and d. Wavelets
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Table 2: Impulse responses h(n), g(n), I(n), and k(n) for p=0 and d € {1, 2, 3}.

d=1 d=2 d=3
n | hn) || g(n) [ () | k(n) || g(n) | Un) | k(n) [ g(n) | U(n) | k(n)
-2 1
-1 0.5 1 1 -3 | -0.125
01 0.5 -1 0.5 [-0.25 -2 1 0.5 [-0.25 3| 0.625 | 0.0625
1 0.5 | 0.25 1] 05 -1 | 0.625 | -0.0625
2 -0.125

Table 3: Impulse responses h(n), g(n), I(n), and k(n) for p=1 and d € {1, 2, 3}.

h(n) d=1 d=2
n il Un) | g(n) | k() | g(n)| k(n)
1025 1[-0.0625 | 1[-0.0625
005 -1[-03125 || -2 |-0.375
1 0.25 0.3125 | 1 |-0.0625
2 0.0625
d=3
n || h(n) | g(n) | Un) k(n)
-3 -0.015625
-2 1|-0.09375 | 0.00390625
1025 | -3 0.265625 | 0.04296875
005 3| 06875 | 0.1015625
11025 | -1| 0.265625 |-0.1015625
2 -0.09375 | -0.04296875
3 -0.015625 | -0.00390625




-2

-3

for

&
iy S
&=
o0
i
Il
ownY
8
p—
>
—~
3
o
ae]
=]
<
&
Ha
S
o
~S
Il
\x)\ﬁ
(IQau
D5
-3 3
ez
5
+dp
o)
= T
=
I
—~~
~
=
(@]
wn
N’
—

0 (dashdotted), p=

Figure 8: (a) Wavelets (a) 9(z)

p




Table 4: Impulse responses h(n), g(n), [(n), and k(n) for p=2 and d € {1, 2, 3}.
1

d= d=2
n | h(n) | g(n) | Un) | k) [g(n)]| Un) [ kn)
-2 ([ 0.125 -0.015625 -0.015625
-1{/0.375 || 1]0.125|-0.109375 || 1|0.125 | -0.125
00375 | -1|0.375|-0.34375 | -2 |0.375 |-0.46875
1] 0.125 0.375 | 0.34375 10.375 | -0.125
2 0.125 | 0.109375 0.125 | -0.015625
3 0.015625
d=3

n || hn) | g(n) {(n) k(n)

4 -0.001953125 | 0.000244140625

-3 -0.017578125 | 0.003662109375

-2 || 0.125 1-0.0703125 0.0263671875
-1 |{ 0.375 -3 | 0.085937 0.0908203125
0| 0.375 3| 0.50390625 | 0.13037109375
0.125 -1 | 0.50390625 |-0.13037109375
0.0859375 -0.0908203125
-0.0703125 -0.0263671875
-0.017578125 | -0.003662109375
-0.001953125 | -0.000244140625

T W N =

from this family have a support of length d+p+1, regularity order p, and are either
symmetric or antisymmetric.

As already discussed, wavelets with p=2 and d=1 from a family of wavelets with p even
and d=1 were used in [37, 11], whereas filters with p=1 and d=2 from a family of filters
with p odd and d=2 were employed by Laine and collaborators [10, 8, 7]. Here described
transform puts no restrictions on the choice of p or d whatsoever, and uses a better
initialization procedure than the one originally proposed in [11].

2.2.3 Remarks

1. As mentioned in Section 2.2.1, the translation invariance property of the discrete dyadic
wavelet transform is due to the fact that the translation parameter is sampled with the
same sampling period as the input signal over all scales. When comparing Figure 6 to
traditional filter bank implementations of an orthogonal and biorthogonal wavelet
transform, we observe that each subband shown in Figure 6 is retained at its original
density rather than being critically sampled. Note, that the filters at distinct scales are not
the same as in orthogonal or biorthogonal cases of analysis [17].

The discrete dyadic wavelet transform is highly redundant. To obtain a more parsimonious

31



representation we may sample the translation parameter in a translation-invariant manner
(e.g., sampling a function at its extrema or extrema of its derivatives). Of importance is,
whether or not it remains possible to reconstruct the original signal from this subset of
transform coefficients.

In [37, 11] a reconstruction algorithm is presented that reconstructs an approximation of a
signal given the position of local maxima of wavelet coefficients modulus and the values of
wavelet coefficients at each corresponding location. Wavelets with d=1 were used so that
the locations of maxima corresponded to inflection points of the original signal smoothed
at dyadic scales.

2. For cases, when the wavelet 1)(z) from Section 2.2.2 is equal to either the first (d=1) or
the second (d=2) derivative of a smoothing function 9(z) = B,,4(z) the dyadic wavelet
transform of a function s(z) € L?(R) can be written as

4%,

Wns(z) = s * (2’" T

) (z) = Zmd%(s *0n)(z) meZ, de{1,2}.
Depending on the wavelet selected for analysis, the wavelet transform W,,s(z) is
proportional either to the first or second derivative of s(z) smoothed by 6,,. By recording
the zero-crossings of W, s(z) for d = 2, a scale-space image of the representation similar to
[31] can be obtained. The only differences are that curves in the scale-space plane are
computed for dyadic scales only and that 9,, is a close approximation of a Gaussian
instead of a true Gaussian.

2.2.4 2-D Discrete Dyadic Wavelet Transform Revisited

The dyadic wavelet transform of a function s(z,y) € L?(R?) is defined as a set of functions
[11]
{Was(z,9), W2s(,9)} e 2> (25)

where Wy s(z,y) = s * ¢, (z,y) for i = {1,2} and i, (z,y) = 272™*(2"™z, 2-™y) are
wavelets 1'(z, y) expanded by a dilation parameter 2™.
To ensure coverage of the frequency space there must exist an A, > 0 and By < 0o such
that o o
Ay < 3 Y 192w, 2™w,) 2 < B,

m=-o0 i=1
is satisfied almost everywhere. If (nonunique) functions x(z, ), x*(z,) are chosen such
that their Fourier transforms satisfy

o] 2

3 (2w, 2™wy) R (2w, 27w,) =1,
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the function s(z,y) may be reconstructed from its dyadic wavelet transform by

00 2
s(z,y) = D Y Whsxxi(z,y),

m=—00 =1

where x%,(z,y) = 272y} (27, 27™y).

However, when processing discrete functions the scale 2™ may no longer vary over all

m € Z. Let the finest scale be normalized to 1 and the coarsest scale set to be 2M. Let us,
similar to [11], introduce a real smoothing function ¢(z,y) such that its Fourier transform
satisfies

~ © 2 A . .
|p(wg, wy) P = Zz/)’(2""wm, 2™wy) X (2™ wyg, 2™ wy). (26)

Here, as in one dimension, a finite energy discrete function (s(ng, ny) € 12(Z?)) can be
written as the uniform sampling of some function smoothed at scale 1: s(n, n,)

= Sof(ng,ny), where f(z,y) € L?(R?) is not unique, and S, f(z,y) = f * ém(z,y). This
led Mallat and Zhong [11] to a two-dimensional analog of the one-dimensional definition of
the discrete dyadic wavelet transform:®

{Smaf(ng + 5,1y + 8), {Wpf(ng + 5,1y + 8), W2 f(ng + s,n, + 3)}m€[°’M—1]}(nz,ny)eZ2‘

We will use, as in Section 2.2.2, a spline-based initialization procedure.

To implement a multidimensional discrete dyadic wavelet transform within a fast
hierarchical digital filtering scheme, the wavelets were chosen to be separable products of
one-dimensional functions:

where ¢(z) and 1(z) were chosen as described in Section 2.2.2 (i.e., ¢(z) = f,(z) and P(w)
specified by (13)).
From (27), (28), and (13), we may write

where G(w) is given by (22) for d € {1,2}. Choosing

Xl(wwawy) = Ks(wz)Tl(wy)Bp(wm):ép(wy)’ (31)
)22(w$,wy) = Ky(wy)Th (wm)ﬁp(wz)ﬁp(wy), (32)

5As in Section 2.2.2, we put the finest scale of the transform at m = 0.
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Table 5: Impulse responses t,(n) for p € {0,1,2}.
n | p=0 |p=1 p=2

-3 0.0078125
-2 0.03125 | 0.046875
-1 ]| 0.125 | 0.125 0.1171875
0] 0.75 | 0.6875 | 0.65625

1] 0.125 | 0.125 0.1171875
2 0.03125 | 0.046875
3 0.0078125

where K(w) and Ty (w) are digital filter frequency responses, we may compute (26) for the
finest two scales by

2
sz@wz’ 2wy) X' (2wz, 2wy) = |$(wa, wy)|? — [$(2ws, 2wy ) 2. (33)
=1

Inserting the terms defined by (29), (30), (31), (32), (12), and (16) with

P(we, wy) = By (wz) By (wy) into (33) results in

K(wz)G(wo)Ti(wy) + K(wy)G(wy)Th(ws) + |H(ws)P[H(wy)? = 1. (34)

Equation (34) represents a relation between the frequency responses of the digital filters
used to implement a multidimensional discrete dyadic wavelet transform and is a
multidimensional analog to (17).

Solving (34) for T;(w) by substituting K (w)G(w) from (17) yields the closed formula [11]

Ti(w) = 5 (1+ H()P) (3)

In Table 5 we provide the filter coefficients for T3 (w) from (35) for p € {0,1,2}. All other
filters from (34) were already specified in Section 2.2.2.

As in the one-dimensional case, a two-dimensional discrete dyadic wavelet transform can be
implemented as a fast hierarchical filtering scheme. To derive such an implementation, we,
similar to the one-dimensional case from Section 2.2.2, use the definition of the
two-dimensional dyadic wavelet transform (25) and require §(w,,w,) = 0 for |w,| > 7 or

|wy| > . Using Shannon’s sampling theorem in two dimensions [38], (29), (30), and m=0,
we get

M8

8(iz, iy) sinc(ty — i5) sinc(ty — 4, )-
—00

Y

Wy s(z, ) :/°° /°° ; ;i:ooi

C Y g-s(m)By(m — tn — m)By(y — t,) i, dt,

m=—00
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and

00 fo'e} o0 o0
Wes(z,y) = /_ ] /_ XY sliayiy)sinelts — iz) sinc(t, — iy)

x=—00 ly=—00

Byl — 1) i g-s(m)Bp(y — ty — m) dt, dt,.

m=—0o0

As in one dimension, we make use of the fact that the cardinal spline functions converge to

the sinc function as their order r tends to infinity, and write

I/I//()Ts(wm, wy) 2 S(ws, wy)Bfl(wm)B:I(wy)Bp+r+l(wm)Bp+r+l (wy) G-s(wz)

and
Vf/?s(wm, wy) = S(wg, wy)Br_l(wm)Br_l(wy)Bp+r+l(wm)Bp+r+1(wy) Gos(wy),

or for m € [0, M) and discrete signal processing

F{Ws(z,y)

} =~ S(ws, wy) Bfl(wm) Br_l(wy) Bpiri1(wz):

T=Ng,Y=Ny
‘Bpiri1(wy) G-s(2"ws) H H_s(2'ws) H_(2'wy). (36)
and

F{Wzs(z,y)

} = S(we, wy) Br_l(wz) B;l(wy) Byiri1(ws)

T=Ng,Y=Ny
m—1

‘Bpsri1(wy) G-s(2"wy) D(; H_y(2'w;) H_(2'wy). (37)
i=

Equations (36) and (37) describe the decomposition part of the filter bank implementation
of a two-dimensional discrete dyadic wavelet transform. The reconstruction part can be
obtained from (31)—(33) with (12) and (16). The entire filter bank implementation of the
transform is shown in Figure 9. Except for the prefiltering and postfiltering, we readily
recognize the implementation proposed in [11].
Using the fact that a wavelet 1(z) is equal to a first (d=1) or a second (d=2) derivative of
a spline function fp14(z), (27) and (28) may be rewritten as
0% (z, )

oz¢

P (z,y) = i,de{1,2},

where
ﬂl(wa Y) = Bp+a(z) Bp(v)

and

9(2,Y) = Bp(2) Bp+a(y)-
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| Gs(mx) —°

] B-r1(mx) B:(my) | Bp+r+1((0x) Bp+r+1(my) G-s((’)y) ©

— GS(ZO)X) — o

T Hs(mx) Hs(my) Gs(zmy)

— H,Q0,) Hy2o) —

(a)
o K(o,) T,(@y) —
o T, (@, K{0,) Byrs1(@y) Byirat(®,) B(,) B/(o,) —*
— K(20,) T,20,) —
— T,20,) K20,) H;(0,) Hy(o,) —
— H;Q0,) Hi(0,) —
(b)

Figure 9: Filter bank implementation of a two-dimensional discrete dyadic wavelet transform
(a) decomposition and (b) reconstruction for two levels of analysis. H* (w) denotes the
complex conjugate of H_ (w).
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Let us denote Ws(z,y) = (Wis(z,9), Wis(z,9)), V = (&, 2), A=V = (Z + &),
and assume that ¢*(z,y, ) can be approximated by 9(z,y) for both i € {1,2}.
For d=1 it then follows that

Wins(z,7) = 2"V (s * 9m) (z, 1). (38)
Thus for d=2 we can write
2
Y Weis(z,y) = 22 A(s * 95) (2, ). (39)
i=1

With 9(z,y) being a Gaussian, finding local extrema of (38) in the direction of gradient V
corresponds to the filtering stage of a Canny edge detector [33], and finding zero-crossings
of (39) corresponds to the filtering carried out with a Marr-Hildreth edge detector
(Laplacian of Gaussian) [39]. (Note that both edge detectors involve postprocessing). Edge
detection based on finding local extrema of Wy,s(z, y) or zero-crossings of 2 Wi s(z,y)
is therefore an approximation to the Canny or the Marr-Hildreth edge detector over a
range of dyadic scales. The differences stem from the fact that 9(z, y) is neither a Gaussian
nor is ¥¥(z, y) equal to ¥(z,y).

2.2.5 Steerable Functions

When extending the transform from Section 2.2.2 to two dimensions, one of the first
questions that come to mind is how to deal with the fact that derivatives can be defined in
any direction of the plane.® In case of a first derivative of a Gaussian, one can simply
compute first derivatives of a Gaussian in z and y directions and then determine the
derivative in any direction from these two directional derivatives [33]. For higher order
derivatives of a Gaussian, Freeman and Adelson [34] showed that order+1 directional
operators are needed for synthesizing the operator at any orientation. In fact, functions
with the property of expressing their arbitrary rotations as linear combinations of some
functions are not limited to derivatives of a Gaussian. Below, we briefly restate some of the
results from [34].

A two-dimensional function is called “steerable” if its rotations generate a finite
dimensional space. Rotations of a steerable function f(r, ) can therefore be expressed as

I
f(r,0—66) = ci(6o) fi(r, 0 (40)
i=1

6Second derivatives of central B-splines can be used, as we saw in Section 2.2.4, to approximate Laplacian
of a Gaussian for approximately rotation-invariant, although not directional, processing.
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where 6, denotes an arbitrary angle, {c;(6p)} stands for a set of interpolating functions,
{fi(r,0)} is a set of basis functions, and r = /z% + y? and 0 = arg(z, y) are polar radius
and angle, respectively.

If f(r,0) represents a filter kernel, the result of filtering with a rotated filter f(r,8 — 6;) can
be computed simply by {c;(6p)} weighted linear combination of outputs from basis filters
{fi(r,0)}. Only the outputs from basis filters need to be precomputed and then the output
from a filter rotated by any angle 6, can be found by interpolating between them. When a
large number of rotations of a template filter is required, the above scheme can lead to
substantial savings in both computational cost (time) and memory requirements (space).
The necessary condition for a function f(r,6) to be steerable is that f(r,#) is bandlimited

in its polar angle:
N

f(r,8) = Z an(r) ™. (41)

n=—N
This can be verified by inserting (41) into (40) and by assuming, for convenience, that
f,-(r, 9) = f(?", 0 — 91) ;
an(r) €7 = 3" ¢;(6p)an(r) eI, (42)
i=1
where {6;} is a set of user defined angles and n € [-N,0]. 7 Since only nonzero coefficients
an(r) are of interest, both sides of (42) can be divided by a,(r). This yields a matrix

equation from which interpolating functions ¢;(6p) can be determined:

1 10 10 . 1 %] (00)
ei% el edf2 ... pibr c2 (6

_| ¢ ' ' 2(_ o) | (43)
ej]'vao ejI.V(h 63’1.\792 e ejI'VOI CI(-G())

For coefficients a, = 0 the rows corresponding to each n were removed from the matrix
formulation shown in (43). For this system to have a solution, the angles {;} must be
chosen such that the columns of the matrix are linearly independent.

In [34] they proved that the minimum number of basis functions f;(r,#) needed to steer
f(r,0) according to (40) is equal to the number of nonzero coefficients a,(r) in the Fourier
series expansion (41).

To conclude this brief description of steerability, let us only remark that functions which
are not steerable (i.e., do not have a finite number of terms in (41)) can be approximated
with steerable functions (a singular value decomposition was employed for approximating
such functions efficiently [40]), and that the technique of expressing transformed versions of

"Note that the constraints are the same for n € [~N,—1] and n € [1, N], so that a subset of all possible
values for n € [-N, N] can be taken.
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a function as linear combinations of a fixed set of basis functions is not limited to rotations
(extensions to translations [41], scalings [40, 41], and general transformations [42] have
been reported).

2.2.6 Steerable Dyadic Wavelet Transform

Returning to the question from the beginning of Section 2.2.5, the answer seems obvious:
one needs to construct a steerable analog to the one-dimensional transform from Section
2.2.2. Steerable transforms are nothing new—quite a few [43, 44, 45, 41] have been devised,
some of them [44, 45] exactly for the computation of directional derivatives. Here, we are
not interested in any directional derivatives: we want to use derivatives of central B-splines
which, as the order of B-splines increases, tend to derivatives of a Gaussian.
We define a steerable dyadic wavelet transform of a function s(z,y) € L?(R?) at a scale
2", me Z, as [9]

Wis(z,y) = s * Y} (2,9), (44)
where ¢ (z,y) denotes ¥, (z,y) rotated by 0;, Y (z,y) = 272™p(2" ™z, 2™ ™y), ¥(z,y) is a
steerable wavelet that can be steered with I basis functions, and 6; = i}—lw with
ie{1,2,...,I}.
Analogously to the one-dimensional case (cf. Section 2.2.2) we require the two-dimensional
Fourier plane to be covered by the dyadic dilations of 1/A)i(2mwm, 2™w,): there must exist
Az > 0 and B3 < oo such that

0 I .
A3 < > ) (2™ wy, 2™wy)|* < Bs (45)

m=—o0 i=1
is satisfied almost everywhere.
If (nonunique) reconstructing functions xt (z,y) are chosen such that their Fourier
transforms satisfy ;
{2 3 (2™ ws, 2mwy) R (2 ws, 2wy) = 1, (46)
m=—00 =1

the function s(z,y) may be reconstructed from its steerable dyadic wavelet transform by

oy = 3 Y Wisx (o), (47)

m=-00 =1
where X%, (z,y) denotes X, (7,y) rotated by 6; and x,(z,y) = 272 x(2-™z, 27 ™).
To derive an algorithm for the fast computation of the transform, we, similar to (10),
introduce two smoothing functions such that

A

o I )
¢(wza wy) @(wma wy) = Z Z ¢z(2mwz> 2mwy) X' (2mwm’ 2mwy)‘ (48)




We choose wavelets that are steerable analogs to the one-dimensional wavelets from Section
2.2.2:8

crwp\\ Pl
zﬁ(wr,wg) = (jw, cos(wy))? (SILZ—)) , (49)

Wy
2

where w, = /w2 + w? and wy = arg(w,,wy,). These wavelets can be steered with d+1 basis
functions (i.e., I in (40) is equal to d+1).

Choosing
QE(2WT) = Hst(wr) QAS(LUT), (50)
¥ (wr, wp) = Gat(wr, wp — 0;) P(wr), (51)
¢(2wr) = La(wy) ¢(wr), (52)
and
)Zi (wr, w0) = Kst(wrawa - ez) (p(wr)’ (53)

and using (50) through (53) with (48) computed for the finest two scales, we obtain

I
Z Gst(wr,wg — 0;) Kot (wy, wg — 0;) + Hep(wy) Lgt (wy) = 1. (54)

=1

A

Setting ¢(w,) = G,(w,), and employing (12) and (49) with (50) and (51), we find that
Hy(wy) = H_s(wr) (55)

and
G st(wr, wp) = (cos(wg))?G_s (wr), (56)

where H(w) and G(w) are specified by (16) and (22), respectively.
By inserting (55) and (56) into (54), the missing two filters can be chosen as

Lg(w,) = Le(wy) (57)
and )
Ko(wr,wg) = ai(cos(wg))sz(wr), (58)

where L(w) and K(w) are given by (23) and (24), respectively, and C; =

i=1 (cos (w — 6;))*.
Figure 10 shows a mammogram and the corresponding wavelet transform coefficients for
the second derivative (d=2) wavelet. Wavelet transform coefficients for the fourth
derivative (d=4) wavelet are shown in Figure 11. With increasing order of the derivative,
the orientation selectivity becomes better.

8This choice can be viewed as an extension of the transform presented in 46, 9, 47].
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(b)

Figure 10: (a) Orlglnal mammogram. (b) Wavelet coefficients for d=2, m € {2, 3,4} (left
to right), and 6; = =1m, i € {1,2,3} (top to bottom).

.
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Figure 11: Wavelet coefficients for mammogram from Figure 10(a). d=4, m € {2, 3,4} (left
to right), and 6; = 217, i € {1,2,3,4,5} (top to bottom).
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2.2.7 Multiscale Spline Derivative-Based Transform

Let us pause here for a brief assessment of the two-dimensional steerable transform derived
so far. We have chosen steerable wavelets (49) which are equal to d-th order derivatives of
circularly symmetric spline functions in the direction of z-axis (note that knots for these
splines are circles) and we have laid a foundation for filter bank implementations in (54).
An obvious shortcoming of this scheme is the fact that none of the filter kernels obtained
from (55) through (58) is compactly supported on the rectangular grid. For
implementations using digital filters, one is therefore forced to approximate these frequency
responses, and by doing so, (54) may not hold anymore. Filters in filter bank
implementations of steerable pyramids described in [44, 45, 41], for example, were designed
by using various techniques for approximating desired frequency responses. None of the
reported filter banks achieved perfect reconstruction and all filter kernels were
nonseparable. Here, we will take a different approach. We will approximate the wavelets in
(49) in a way that will lead to z-y separable filters in a perfect reconstruction filter bank
implementation of the transform such that the quality of approximation will improve by
increasing the order of B-splines.

Let us approximate wavelets from (49) with

d
yiay) = Lo g ) (59)
Based on the fact that B-splines tend to a Gaussian as their order increases, it is easy to
see that both wavelets (49) and (59) converge to the same functions (i.e., d-th order
derivatives of the normalized Gaussian in the direction of z-axis) as p — oo.
In order to steer wavelets ¥(z,y) given by (59) (note that steering will be only
approximate, since these wavelets are not steerable), we need to find basis functions that
will approximately steer ¢¥(z,y). Computing rotations, as we did in (44), is not practical
here, because arbitrary rotations of (59) cannot be expressed exactly in terms of central
B-spline functions from Section 2.1. Instead, we take advantage of the property of
circularly symmetric functions that rotations of their directional derivatives are equal to
directional derivatives in rotated directions:

Rag {adé’c(x,y)} _ 9%ec(z,y)

=d —d )
an 37100

where Ry, stands for rotation by 6y, %:%yl =17 6gc(m, Y), 0c(z,y) is a circularly symmetric
function, and iy, denotes vector 7 = (cos 6, sin 8) rotated by 6.
Let us choose

0(z,y) = Bp+a() Bp+a(y),
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which is approximately circularly symmetric function for higher order splines. A rotation of
Y(z,y) = Qd%ﬁ;yl from (59) by 6y can therefore be approximated by

d d d—i i

W (z,y) = 0 %(7;3‘; y) — ; ( ‘Zi ) n:—in;d d[;;;tc;(w) d ,32-;;(9)’ (60)
where 7 = (cos f, sin 6p) = (ng, ny).

Note that in case of Gaussian, which is both z-y separable and circularly symmetric, (60)
becomes exact (e.g., for o(z,y) = e~ +V") fy = —0, and d = {2,4}, we obtain, up to a
scaling factor, z-y separable basis set for the second and fourth derivative of Gaussian from
Tables IIT and VII of [34]).

Having found a set of basis functions (60) that approximately steer wavelets (59), we want
to construct a transform such that Equations (44) through (48) will be valid (superscript 4
must be viewed now as an index, rather than rotation by 6;). In frequency domain, we can
express basis functions from (60) as

1/3“'1 (We, wy) = G‘i_si(wm)Gi_s(wy)3p+i(wz)3p+d—i(wy)’ 1=0,1,...,d, (61)

where G¢(w) is given by (22) and G%(w) = 1.

Choosing appropriate {*(wy,w,) to obtain a relation needed for the filter bank
implementation of the transform is more complicated than in one dimension. Since we
could not find a general solution for arbitrary d, we solve each case separately. Below, we
present solutions for the first four orders. When d < 2, we impose

P(we, wy) = ¢(wa, wy) = By(ws)By(w,), a constraint analogous to the one from Section 2.2.2.
For d = 1, we write similar to [11]

Xl(wmwy) = Ksl(wa:)Tl(wy)Bp(ww)Bp—l(wy)7 (62)
Xz(ww’wy) =T (wz)Ksl(wy)ﬁp—l(wm)ﬁp(“}y)’ (63)

where K%w) and Tj(w) are given by (24) and (35), respectively.
Computing (48) for the finest two scales and inserting (12), (61), (62), and (63) yields a
relation between frequency responses

G o) K () Ta () + T (02) G () K (@y) + | H (wa) H(wy) 2 = 1.

For d = 2, we choose

f(l(wz’wy) = Kf(ww)%(wy)Bp(ww)Bp—2(wy)’ (64)
Xz(wz, wy) = Ks1 (ww)Ksl (wy):ép—l (wx)Bp—l (wy), (65)
)23(wz,wy) = T2(wz)Kf(wy)Bp—2(ww)Bp(wy)’ (66)
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where

T(w) = [Hw)* (67)
Using (12), (61), and (64) through (66) with (48) results in
G (wz)Kz (we)Ta(wy) + Gl(wm)Kl (wm)Gl(wy)Kl (wy) + T3 (wm)G2(wy)Kz (wy)+
HH () Hwy) = 1.
For orders d > 2, we require d;(wz,wy) ,Bp(wz) Bp(wy) and @(wg, wy) = @(wg)P(wy), where
@(w) is specified by (14) and (23).
For d = 3, we choose reconstructing functions
Xl(wa:awy) K3(ww) (%)QO 3( ) (68)
X (way wy) = =K (W) K; (0y) Va(wa) Va(wy) @1 (we) §-2(wy), (69)
X (e wy) = — K (we) Ko (wy) Va(we) Va(wy) @2 (we) $-1(wy), (70)
)24(wz’wy) = Kg(wy)(P 3(ws (P(w ), (71)
where )
Va(w) = 7—2—(1 — |Hw)P), (72)
and ¢_;(w) € L'(R) denotes a function such that ¢(w) = Bi_;(w)@p—_s(w), i € N.
Employing (61), (12), (14), and (68) through (71) with (48) yields a relation
G (w2) K (wa) — G*(wa) K*(we) Va(wa) G (wy) K (wy) Va(wy) —
~GH (wa) K (W) Va(wz) G (wy) K (wy) Va(wy) + G (wy) K (wy) +
+H (wg) L(we) H (wy) L(wy) = 1,
where L(w) is specified by (23).
For d = 4, our choices are
Xl(wmawy) = K, (wz)T2(wy)95(WZ)‘p—4(wy)’ (73)
5(2(“’30"‘)3/) = Kf(wm)Ksl (wy)P-1(wz) P_3(wy), (74)
X Wy wy) = =K (wa) K (wy) Valwa) Va(wy) @2 (we) P-2(wy), (75)
)24(‘*‘)@1%/) = Ksl (wa) K5 (wy) @3 (wz) P-1(wy), (76)
Xs(wzawy) = To(w:) K (wy)‘:b—ti(wx)(/’(wy)a (77)
where
Vi(wg) = 1~ [H(w)[? (78)



Using the above functions (73) through (77), (61), (12), and (14) in (48) computed for the
finest two scales gives

G (we) K* (wa) T (wy) + G (wa) K> (w3) G (wy) K (wy) -
=G {wo) K (wo) Va(wa) G* (wy) K (wy) Va(wy) + G (we) K (w2) G (wy) K (wy)+
+T (wa) G {wy) K (wy) + H (ws) L(wa) H (wy) L(wy) = 1.

Here, we have even more freedom for choosing the reconstructing functions than in one
dimension. The above functions for d = {2, 3,4} were found by trying to imitate the
one-dimensional transform from Section 2.2.2 as much as possible. All decomposition filters
G%(w) were first paired with corresponding reconstruction filters K(w), and then all other
potential digital filters were specified as polynomials in H_,(w). We inserted thus specified
filters into a relation between their frequency responses and solved for the unknown
polynomial coefficients. Since we allowed more filters with higher-degree polynomials than
expected in the solution, the resulting system of linear equations was underdetermined.
This allowed enough freedom for removal of undesired digital filters and for balance
between degrees of polynomials.

The described procedure for determination of reconstructing functions and filters involves
quite a lot of heuristics to obtain the appropriate solution from the underdetermined linear
system. Unfortunately, we are not aware of any systematic way (aside from numerical
optimization, which may be pretty cumbersome) to obtain solutions comparable to the
ones above.

Next, we will derive a filter bank implementation of the transform. As in Section 2.2.4, we
assume a bandlimited input signal: §(w,,wy) = 0 for |w;| > 7 or |wy| > 7. Using Shannon’s
sampling theorem in two dimensions [38] with (44) and basis functions from (61), we can
write

Wis(z,y) / / Z Z 8(iz, iy) sinc(ty — i5) sinc(ty — 4y)-

2 =—00 'Ly—

oo

Z gi?(mz)ﬂpﬂ(w — ty — M) Z 9%s(my) Bpra—i(y — ty — my) dt, dt,,
Mg =00 My=—00

where i =0,1,...,d as in (61).

Again, we approximate sinc functions with r-order cardinal splines, then use (4), and get

DFT{Wy,s(z,y)

b= S(wa, wy) Bnl(wm) B_l(w ) Bptryis1(ws)-

T=Ng,Y=Ny

‘Bpyrya-it1(wy) G5H(2™w,) G, (2™w,) HH”“ we) HPEH (27w, (79)
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Using (79) with an approximation By,qit1(w) ~ Bpir(w)B;(w), we can obtain a filter
bank implementation of the transform decomposition. The reconstruction part follows from
(48), (61), and reconstructing functions for distinct values of d. Figure 12 shows filter bank
implementations of a multiscale spline derivative-based transform for d = {1, 2, 3,4}. For
d = 1, we recognize (except for the prefiltering and postfiltering) the filter bank
implementation of a two-dimensional discrete dyadic wavelet transform from [11]. For

d = 2, however, our transform differs from the filter bank presented in [8] (i.e., the
corresponding transform described in Section 2.2.4): second derivative is computed only in
the directions of z and y-axis in [12, 8], which is not enough for steering. Although not
particularly appropriate for orientation analysis, such a scheme may still, as we have seen
in Section 2.2.4, efficiently approximate Laplacian of Gaussian across dyadic scales.

A transform similar to the one described in this section, was presented in [44, 45, 41].
Their filter bank implementation is less redundant (downsampling is used on the lowpass
branch, while simultaneously keeping aliasing negligible by using a filter with insignificant
amount of energy for |w,| > 7) and uses reconstruction filters with same magnitude
frequency responses as the decomposition ones—a possible advantage for certain
applications. They have, on the other hand, little control over the function from which
derivatives are computed (to obtain a d-th derivative, they multiply a circularly symmetric
filter by (—j cos@)? with all filters being obtained by recursive minimization of a weighted
combination of constraints), filter bank does not have perfect reconstruction, and none of
the filters is z-y separable.

2.2.8 Finite Impulse Response Filters

Since all two-dimensional filters used in the filter bank implementations of the transforms
from previous sections are z-y separable, we will begin this section with a detailed
description of FIR filter implementations for the one-dimensional discrete dyadic wavelet
transform implementation from Figure 6. The extension to two dimensions will then be
straightforward.

Let us refer to filters applied at scale 2™ as filters at level m+1, and let filters at level 1
(Equations (16), (22) through (24), (35), (67), (72), and (78)) be called “original filters,” to
distinguish them from their upsampled versions. As an input to the filter bank from Figure
6, we consider a real signal s(n) € I?(Z), n € [0, N — 1]. Depending on the length of each
filter impulse response, filtering an input signal may be computed either by multiplying the
discrete Fourier transforms of the two sequences or by circularly convolving s(n) with a

filter’s impulse response.® Of course, such a periodically extended signal may change

%As is customary in image processing, we use circular, rather than linear, convolution.
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] B.ri((ox) B:(my) ] Bp+r+1(wx) Bp+r+l(my) —°
(a)
R B;+r+l(wx) B;+r+1(0)y) ] Br(mx) Br(wy) A
(b)
— G2"0) ~— K(2"0,) T,(2"0,) [—
o G20 ——— — T,2"0,) K(2"0,) o
— H,(2"0) H,"0) — — L2"0,) L2 o) —
(c) (d)

- K0 T2, |

{620, G20 |— — K20, Ki2"0,) |

G a,) : — T,2",) K"0,) |
— H,(@"0) H?"0,) | — L(2"0) L(2"0,) |—
() (f)

Figure 12: Filter bank implementation of a multiscale spline derivative-based transform for
m € [0, M — 1]: (a) Prefiltering, (b) postfiltering, (c) decomposition and (d) reconstruction
modules for d = 1, and (e) decomposition and (f) reconstruction modules for d = 2.
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— G20, B2"0,) F— : (K", BJ2",)

~{ G20, G(2"0,) }—o «»—{-Kz(Z'"a)x) Vi2"0,) K(2"0,) V,("0,) }—
—t— G2"0,) CQ"0,) — —K(2"0,) V("0 K20, V,2"0,) o
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Figure 12: Continued: (g) Decomposition and (h) reconstruction modules for d = 3, and

(i) decomposition and (j) reconstruction modules for d = 4. Decomposition modules are
recursively applied at the locations of the filled circles.
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abruptly at the boundaries causing artifacts. A common remedy for such a problem is
realized by constructing a mirror extended signal [12]
_ ) s(-n—1) ifne€[-N,-1]

Sme(n) = { s(n) ifnel0,N-1], (80)
where we chose the signal sp.(n) to be supported in [-N, N — 1]. It will become evident
shortly, that mirror extension is particularly elegant in conjunction with
symmetric/antisymmetric filters.

Let us first classify symmetric/antisymmetric real even-length signals into four types [23]:
Type I f(n) = f(-n),
Type I f(n) = f(-n - 1),
Type IIT f(n) = —f(-n),
Type IV f(n) = —f(-n~1),

where n € [N, N — 1]. Note that for Type I signals the values at f(0) and f(—N) are
unique, and that for Type III signals the values at f(0) and f(—N) are equal to zero.
Using properties of the Fourier transform it is easy to show that the convolution of
symmetric/antisymmetric real signals results in a symmetric/antisymmetric real signal. If
a symmetric/antisymmetric real signal has an even length, then there always exists an
integer shift such that the shifted signal belongs to one of the above types.

Now, we are ready to examine the filter bank implementation of a one-dimensional discrete
dyadic wavelet transform from Figure 6 with filters given by (16) and (22) through (24)
driven by a mirrored signal sm(n) at the input. Let the number of levels M be restricted

by N
-1
M < 1+10g2—i———

maz — 1’ (8
where Ly, is the length of the longest original FIR filter impulse response.
Each FIR filter block in the filter bank consists of a filter and a circular shift operator.
Equation (81) guarantees that the length of the filter impulse response does not exceed the
length of the signal at any block.
Since our input signal sp,.(n) is of Type II and noninteger shifts at level 1 are rounded to
the nearest integer, it follows that a processed signal at any point in the filter bank belongs
to one of the types defined above. This means that filtering a signal of length 2N can be
reduced to filtering a signal of approximately one half of its length. (For Types I and III,
N + 1 samples are needed. However, for Type III one needs to store only N — 1 values

because zero values are always present at the zeroth and (—N)-th sample position).
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Implementation is particularly simple for FIR filters designed with d even and p odd.
Filters are of Type I in this case, so the signal at any point of the filter bank will be of
Type II. An FIR filter block from the filter bank shown in Figure 6 can therefore be
implemented by

Fsmu(n) = f(0)urr(n) + Z f@[urr(n —2™) +uyr(n+2™)], nelo,N-1], (82)
where
u(—n —1) ifnel[-5,-1]
u(@2N —n—1) ifne [N,

u(n) is an input signal to a block, f(n) is an impulse response of some original filter, L is
the length of the filter, and N is the length of an input signal s(n) to the filter bank.
Implementation of filters b,(n) used for prefiltering and postfiltering represents a special
case of (82) with m=0.

A filter bank with the above implementation of blocks and signal s(n) at the input yields
equivalent results as circular convolution for s.,.(n) as defined by (80). In addition to
requiring one half the amount of memory, the computational savings over a circular
convolution implementation of blocks are, depending on the original filter length, three to
four times fewer multiplications and one half as many additions.

A similar approach can be used for other filters. However, things get slightly more
complicated in this case, because the filters are not of the same type and the signal
components within the filter bank are of distinct types. As a consequence, an
implementation of blocks that use distinct original filters may not be the same, and the
implementation of blocks at level 1 may differ from the implementation of blocks at other
levels of analysis.

The decomposition blocks at level 1 can be implemented by

£
G_sou(n Zg [urr(n —i—1) —uy(n+14)], nell,N-1],

for d odd, (82) for d even,

L
L.

H_gou(n) = > h(i)urr(n —i—1) +urr(n+1)], nelo,N],
=0
for p even, and (82) for p odd, where u;(I) is defined by (83), g(n) and h(n) are impulse
responses of the filters computed from (22) and (16), respectively, and L is the length of
the corresponding impulse response.

o1




The output from a block G_,(w) at level 1 is of Type III for d odd and of Type II for d
even, while the output from H_,(w) at the same level is of Type I for p even and of Type II
for p odd.
The decomposition blocks at subsequent levels m € [1, M —1] can be implemented by
£
G_smu(n) = g()ur(n — 2™ + 5)) —ur(n +2™(i +5))], ne€l,N-1],
i=0

for d odd and p even,

G_smu(n —}:_: g(@)urr(n = 2"GE +s)) —un(n+2"(+5s))], nelo,N-1],

for d and p odd,

L-1
2

F_smu(n) = f(0)ur(n) + ; F@)[ur(n —2™) + ur(n +2™)], n€[0,N], (84)

with f(n) = g(n) for d and p even,

L
L

H_s mu(n) = 2_% h(@)[ur(n —2"(i+5)) +ur(n +2™(i+5))], ne[0O,N],  (85)

for p even, and (82) for p odd, where

u(—n) ifne[-%,-1]
ur(n) =4 u(n) if n € [0, N] (86)
u(2N —n) ifne[N+1,3%

The outputs from blocks G_;(2™w) are of Type III for d odd and p even, of Type IV for d
and p odd, and of Type I for d and p even, whereas the outputs from H_,(2™w) are of
Type I for p even and of Type II for p odd.

Next, the reconstruction blocks at level 1 can be implemented by

i
Ks’o'll,(’n, Z k [UIII -1+ 1) - ’LLHI(TL + ’L)], ne [0, N — 1],

=1

for d odd, (82) for d even,

|t~

2
Ligu(n) =Y I(@)ur(n —i+ 1) +ur(n+1)], neo,N-1],
i=1
for p even, and (82) for p odd, where
—u(—n) ifne -4, -1]
0 ifn=0
u“-[(n) = ’U,(’I’I,) ifne [1,N — 1] (87)

0 ifn=N

—u(2N —n) ifne[N+1,3%&
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ur(n) is as defined by (86) and k(n) is an impulse response of the filter from (24). Note
that both outputs from blocks K,(w) and L,(w) are of Type II.

The reconstruction blocks at subsequent levels can be implemented by
£
stmu(n) = Z k(l + 1)[u111(n — 2m(’L + 3)) — u“'[(’fl + 2m(Z + S))], ne [0, N],
i=0
for d odd and p even, (84) with f(n) = k(n) for d and p even,

L
L

K mu(n) = Z% k(i +1)[urv(n—2"(i + 5)) —urv(n+2™(i+5))], ne[0,N-1],

for d and p odd,

L u(n) = H_g nu(n),
for p even, and (82) for p odd, where uf(l) is given by (87),

—u(—n —1) ifne[-%,-1]

urv(n) = { u(n) ifne[0,N—1]

—u(2N —n—1) ifne [N,
and H_, nu(n) is specified by (85). We observe that the outputs from blocks K (2™w) and
Ly(2™w), m € [1, M — 1], are of Type I for p even, and of Type II for p odd.
When we compare the above implementation of blocks to circular convolution driven by a
mirrored signal sp.(n) at the input, we observe that approximately twofold less memory
space, three to four times fewer multiplications and one half as many additions are
required. (For Type I signals an additional sample has to be saved because two values are
without a pair).
Until now, we have talked only about the one-dimensional case, whose filter bank
implementation is depicted in Figure 12. Two-dimensional transform filter bank
implementations (Figures 9 and 12) are not only comprised of z-y separable filters solely,
but also use all the filters from Section 2.2.2. Everything presented in this section so far is
therefore directly applicable to the two-dimensional case. Filters which have not been
treated yet (i.e., t1(n), t2(n), vs(n), v4(n), and filters b,(n) from the decomposition modules
of Figure 12) can all be realized by (82) for p odd or m = 0 and (84) otherwise (f(n)
denotes an impulse response of any of the above mentioned zero-phase filters in this case).!?
The implementation presented in this section performs all operations in the spatial domain,
however, one could also implement the structures shown in Figures 6, 9, and 12 with an

input signal sm.(n) (Equation (80)) in the frequency domain. For short filter impulse

1%Tn case of filters v3(n) and v4(n), a slightly more efficient implementation can be obtained by precom-
puting new filters & * v3(n) and k % v4(n), and then implementing them by K, ,u(n), m € [0, M — 1].
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responses, such as those given in Tables 2, 3 and 4, the spatial implementation described in
this section is certainly more efficient. For long filter impulse responses, however, filtering
is faster if implemented in the frequency domain. Additional details on alternative
implementation strategies can be found in [48].

2.2.9 Infinite Impulse Response Filters

Implementation of IIR filters b,*(n) which were introduced in Section 2.1.2 is a bit more
involved than the one encountered in the previous section. Fortunately, the number of
different cases is much smaller here: possible input to b,*(n) in filter banks from Figures 6,
9, and 12 is either of Type II or of Type 11! We will use ideas and a few results from [20].
Let us first take a closer look at the system function B,'(z). This function can be written
as a cascade of terms

1 -

Ble) = z— 12—"‘2 1 (1-az1)(1-az) (88)

which can be expressed in a parallel form as

R e L -1), (89)

l1—-a2\l—-az! 1-—az

where o and é are poles of the causal and the anticausal filter, respectively.

The impulse response of this term can be written as
-«

e(n) = T

We choose to implement E(z) in a cascade form and therefore extract the difference

al™,

equations from (88):
ct(n)=u(n)+act(n-1) n=12,...,N-1, (90)

and

c(n)=ale(n+1)—ct(n)) n=N-2,N-3,...,0, (91)
where u(n) denotes the input to the block, ¢*(n) is the output from the causal part, and
c¢(n) stands for the output from the block.
To solve (90) and (91) we need boundary conditions ¢*(0) and ¢(IN—1). Let us begin with
filters by (n) in filter bank implementations from Figures 6, 9, 12(a), 12(b), and Figures
12(h) and 12(j) with m=0. We derive

0 ) N-1 i+l | 2N—i o
= > afumy(i) = u(0) + T ————u(i) 2 u(0) + > o u(i), (92)

1=—00 =0 =0

1 Note that symmetry types in this section slightly differ from those defined in Section 2.2.8: here, mirror
extended signals are periodically repeated, so that they stretch from —oo to oo.
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and, using parallel form (89)

co(N—1) = (c"(N-1)+ >

1

where
wiry(n) = urr(n mod (2N)) ifn>0
I =1 upr(=(n+1) mod (2N)) ifn <0,
wrr(n) = u(n) ifnel0,N—1]
=1 w(@N -n—-1) ifne|N,2N 1],
N is the length of an input signal to the filter bank, and 75 < N—1 is selected such that o
falls below a predefined precision threshold.
For IIR filters from Figures 12(h) and 12(j) with m € [1, M — 1] and p odd, we get

oo N-1 ) —
= u(0)+ Y {pﬁ%&ja+kﬂ%#L}}u@ (94)
n=0 i=0 u
and o No1
(N-1) = ——(ct(N-1)+ 3 I {[o"F] +[o™#] Jule),  (95)
l-a n=0 i=0 u b
where

o), = @ ifzeZ
=30 otherwise.

If N is a power of two and 2™~! < N ((81) guarantees that the latter condition is always
true) (94) becomes

i 2N—i
N-1 [af—%] + [a 2mz]
% u(i),
3

-a N-1 [a%”#] + o 1]
¢(N-1) = 1—a2(c (N—l)—i-z 1“ e % u(3)
=0 -

Finally, the boundary conditions for filters b,*(n) from Figures 12(h) and 12(j) with
m € [1, M — 1] and p even are




+ I:{ o) 4 [al‘%ﬂ}u(z)} (96)
and
e(N) = 7= (2" (N) - u(N)),
where

urp(n) = ur(|n| mod (2N)),
ur(n) = { w(@2N —n) ifne[N+1,2N 1),

and ¢™(N) = ¢*(N) with ¢~ (n) denoting response of the anticausal filter from (89) was
used.
Again, if N is a power of two and 2! < N, (96) can be simplified

u(0) + azmu(N) + TN {[azL'"]u + a2;v"7i]u} u(i)

2N
1— a2

ct(0) =

Series in expressions for ¢*(0), ¢(N — 1), and ¢(N) for filters from Figures 12(h) and 12(j)
with m € [1, M — 1] can be, similar to (92) and (93), truncated according to the desired
precision.

For orders p greater than three, we implement B, 1(2) as a cascade of terms E(z) with
different a’s. Note that the output from block E(z) is always of the same type as the input
to it.

2.3 Image Fusion

Image fusion combines particular aspects of information from the same imaging modality or
from distinct imaging modalities and can be used to improve the reliability of a particular
computational vision task or to provide a human observer with a deeper insight about the
nature of observed data. Whether it is combining different sensors or extending the
dynamic range of a single sensor, the goal is to achieve more accurate inferences that can be
achieved by a single sensor or a single sensor setting. By fusing together processed sections
of images, a combined image which is superior to the sum of its parts can be constructed.
We are developing methods by which transformed mammograms can be broken apart and
fused together in a manner which will increase the overall mammogram interpretability.
The simplest method of fusing images is accomplished by computing their average. Such a
technique does combine features from input images in the fused image, however, the
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contrast of the original features can be significantly reduced. Among more sophisticated
methods, multiscale and multiresolution analyses have become particularly popular.
Different pyramids [49, 50] and wavelet-based techniques [51, 46, 52, 53] have been applied
to this problem.

In this section, we compare an image fusion method based upon the steerable dyadic
wavelet transform with recently published fusion methods based upon the gradient
pyramid, the orthogonal wavelet transform, and the biorthogonal wavelet transform.
Sections 2.3.1 and 2.3.2 introduce the gradient pyramid and the discrete wavelet transform,
respectively. For a more thorough treatment of these transforms, please refer to references
cited therein. In Section 2.3.3, we examine the performance of all four transforms on

examples with relation to mammography.

2.3.1 Gradient Pyramid

Gaussian pyramid [30] was used for construction of a gradient pyramid used in [49]. Let
the generating filter kernel for the Gaussian pyramid be

1 4 6 4 1
1 4 16 24 16 4
w(ng, ny) = wp * wp(ng, ny) = %6 6 24 36 24 6 |,
4 16 24 16 4
1 4 6 4 1
where w;(ng, ny) denotes the 3 by 3 binomial filter:
1 1 21
wy(Ng, ny) = T 2 4 2 |.
1 21

Level m € N of the Gaussian pyramid for an input image matrix s(ng, n,) is then

Grn(gy 1) = (W % Grn15(nsy ) )12,

with
Gos(ng, ny) = s(ng,ny).

Gradient pyramid is obtained from the Gaussian pyramid as
D} s(ng, ny) = d; * (Gms(Ng, ny) + Wy * Gms(ng,ny)),
where

di=1 —1],
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An image is reconstructed from the gradient pyramid by converting the pyramid to the
Laplacian and then to the Gaussian pyramid. The Laplacian pyramid is approximated as

——

Lms(ng,ny) = Kns(ng, ny) + w % Kips(ng, ny), (97)

where

Ools—I

Kms(ng, ny) =

4
Z d; * Di,s(ng,ny).

An approximation to the Gaussian pyramid is obtamed by

é;s(nm ny) = Z;,S(nm, '”'y) + 4w * (gjn:ls(”x: ”y))T2'

Note that, since the filters d; have the center of symmetry between samples, they need to
be shifted for reconstruction, and that, because of the approximation (97), the gradient
pyramid does not have the perfect reconstruction property.

2.3.2 Discrete Wavelet Transform

Discrete wavelet transform was implemented as a perfect reconstruction filter bank [54]. In
two dimensions, the transform is obtained by applying the one-dimensional transform
separately along each dimension. Level m € IN of the transformed image matrix s(n,n,)
is therefore

Wy S(nz, ny) = ((Am-15(ns, ny) * §(na))s2 * §(ny))y2,
2,5(zny) = ((Am-18(nz, ny) * §(a)) 12 % (1)) 2,

Am—ls(”rc, "y) * B(”m))w * §(ny))2, and

Ans(nz,1y) = (Am-15(nz, 1) * h(ng)) 1 * h(ny)),2,

é
ﬁ”\
3
g

S

where

Aos(nm, ny) = s(nm’ ny), (98)

{Wi s(ng, ny), W s(ng, ny), W s(ng, my) e, and Apgs(ng,ny) are detail and
approximation coefficients for M levels of analysis, respectively, and g(n) and ﬁ(n) are the
decomposition filters.




Reconstruction of the approximation coefficients at the previous level is given by

Am-15(ng, ny) = (Wihs (e, 1) )12 * G(ny) + (WE(ng, ny) )12 * h(ny) )12 * §(na)+
H(We(nay 1)1z * G(ny) + (Ams(ng, 1))z * B(1y))12 * B(ng),

with §(n) and A(n) being the reconstruction filters.

Two-dimensional wavelets associated with separable filter banks, such as the one just
described, were constructed from tensor products of two one-dimensional multiresolution
analyses (wavelets are products of one-dimensional wavelets and scaling functions) [17].
Note also that, due to oversimplified initialization (98), the discrete wavelet transform may
be a pretty poor approximation to samples of the continuous wavelet transform.

We will limit ourselves to FIR filters (i.e., compactly supported wavelets). In our
experiments, we will use orthogonal wavelet transform with DAUB12 wavelet [17], and
biorthogonal wavelet transform with Bior6.8 wavelet from MATLAB Wavelet Toolbox.

2.3.3 Comparison of Transforms

Image fusion is performed in the transform space by computing local statistics across the
decomposition scales, and reconstructing from fused transform coefficients. Typical size of
neighborhood is between a single pixel and 5 by 5 area with some loss of contrast reported
for the latter [49]. In general, the chosen size of the area represents a tradeoff between
sharpness and introduction of artifacts. In order to achieve our goal of maximum contrast
with minimum artifacts, we limit the neighborhood to a single pixel (maximizing contrast)
and try to choose the most appropriate transform (minimizing artifacts).

After the transform decompositions of images to be fused is performed, the corresponding
transform coefficients of the images are combined according to the fusion rule into a new
set of transform coeflicients from which the fused result is reconstructed. As a fusion rule,
we used the maximum magnitude rule (at each position and scale of the transforms the
coeflicient with greatest magnitude is chosen) for the gradient pyramid, the orthogonal
wavelet transform (DAUBI12), and the biorthogonal wavelet transform (Bior6.8), and the
maximum oriented energy rule (at each position and scale of the transforms the coefficient
with greatest local oriented energy is selected) for steerable wavelet transform [46].

Our first two experiments used the phantom shown in Figure 13. Image matrix has
dimensions 512 by 512, and fusion was performed between the original and shifted
phantom.

First, the image to be fused with the one from Figure 13 was generated by shifting the
phantom one sample vertically towards the top of the image. The ideal result of fusion
should contain no double lines or other artifacts (the distance between the corresponding
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Figure 13: Phantom used for comparisons of different transforms for image fusion.
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Table 6: Performance of fusion algorithms based on four different transforms.
Transform MSE | MAE
Gradient pyramid | 28.66 | 13
Orthogonal WT 014 | 8
Biorthogonal WT | 0.21 7
Steerable WT 0.05 6

points in two images is one pixel, so that the algorithm should merge shifted features into a
single feature). Figure 14 shows the phantom with the surrounding area in the fused
images. The resulting images from all four transforms were clipped (pixel values above the
upper limit of the gray level range were mapped to white) rather than scaled. Please note
the artifacts present when the orthogonal and biorthogonal wavelet transforms were used.
The latter produced a slightly better result, although artifacts due to aliasing and tensor
product representation made both fused images unacceptable.

Our second experiment differed from the first one only in the fact that the phantom from
Figure 13 was shifted by five samples. Here, the shift is large enough that features from
both images may be present in the fused image. The phantom with its surroundings in the
results of fusion using the four transforms is demonstrated in Figure 15. Please note that
the situation is similar to the one in the first experiment. Both orthogonal and
biorthogonal wavelet transforms exhibited obvious artifacts, while the redundant gradient
pyramid and steerable dyadic wavelet transform performed well.

The third experiment was geared towards a quantitative comparison of the four transforms
for image fusion. Similar to [52], we blur different parts of the image and then fuse them in
such a way that each blurred part is fused with its original counterpart. The ideal result of
fusion would be the original image. Figure 16 shows the original 512 by 512 mammogram,
100 by 100 area of interest, and two blurred images to be fused. Mean-square error (MSE)
and maximum absolute error (MAE) between the result of fusion and the original image
were computed for all four methods. Table 6 summarizes the results. Let us remark that
these results are rather typical; on a variety of images, wavelet based methods were very
close, while consistently outperforming the gradient pyramid according to the two criteria.
No significant artifacts were noticed in the “blurring experiments.” By comparing the
extracted regions with the original ones, we subjectively rated the transforms used for
fusion as: (1) steerable dyadic wavelet transform, (2) biorthogonal wavelet transform, (3)
orthogonal wavelet transform, and (4) gradient pyramid. Again, the differences between
different types of wavelet transforms were minor, whereas the gradient pyramid lagged
behind. Regions of interest corresponding to the one from Figure 16(b) are shown in Figure
17. Wavelet based methods produced results that are visually close to the original region,
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Figure 14: Image fusion of phantoms shifted by one sample. (a) Gradient pyramid. (b)
Orthogonal wavelet transform. (c) Biorthogonal wavelet transform. (d) Steerable dyadic
wavelet transform.
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() (d)

Figure 15: Image fusion of phantoms shifted by five samples. (a) Gradient pyramid. (b)
Orthogonal wavelet transform. (c) Biorthogonal wavelet transform. (d) Steerable dyadic
wavelet transform.
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(c)

Figure 16: (a) Mammogram with area of interest delineated. (b) Area of interest. (c) Image
from (a) with left half blurred. (d) Image from (a) with right half blurred.

64




gradient pyramid, however, caused loss of sharpness.




(c) | (d)
Figure 17: Region of interest corresponding to the one from Figure 16(b) extracted from the

fused images using: (a) gradient pyramid, (b) orthogonal wavelet transform, (c) biorthogonal
wavelet transform, and (d) steerable dyadic wavelet transform.
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3 Conclusions

During the first year, we have made significant progress in the development of a
methodology for improving the mammographic viewing environment by steerable
multiscale transforms. We constructed a new transform that does not introduce artifacts
due to translation and rotation invariance, which are inherent to traditional wavelet
analyses, and demonstrated its usefulness for image fusion.

We extended the one-dimensional discrete dyadic wavelet transform to higher-order
derivatives and even-order spline functions and developed an improved initialization
procedure. Comparison to the originally employed initialization [11] showed significantly
better performance of our procedure for finer scales of analysis.

We developed several two-dimensional transforms. All of them were derived with the goal
of eliminating artifacts due to lack of translation and rotation invariance. We presented a
two-dimensional discrete dyadic wavelet transform with a first-derivative wavelet as an
extension of the one originally proposed in [11], a two-dimensional discrete dyadic wavelet
transform with a second-derivative wavelet that can approximate Laplacian of a Gaussian,
and a steerable dyadic wavelet transform implemented in a near-perfect reconstruction
filter bank which may be preferred when there is a need for orientation processing along
equally spaced angles. We derived a multiscale spline derivative-based transform which
uses z-y separable filters in a perfect reconstruction filter bank and enables fast translation
and rotation-invariant directional analysis of images.

We compared the steerable dyadic wavelet transform with the gradient pyramid,
orthogonal wavelet transform, and biorthogonal wavelet transform for fusion of features
relevant to mammography. During our experiments, the steerable dyadic wavelet transform
was exhibiting a combination of best properties of the gradient pyramid and of the
orthogonal /biorthogonal wavelet transform. The steerable dyadic wavelet transform
behaved similarly as the gradient pyramid in a sense that it did not introduce artifacts
commonly present when the orthogonal and biorthogonal wavelet transforms were used. At
the same time, the steerable dyadic wavelet transform outperformed the gradient pyramid
by acting like the orthogonal and biorthogonal wavelet transforms in terms of
mathematical criteria and sharpness in the fused image.

Our future work includes building of a unified framework for creation of a superior local
mammographic viewing environment via steerable dyadic wavelet transform, and for fusion
of locally obtained features for a better global mammographic viewing environment.
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